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A PROOF OF THE BIEBERBACH CONJECTURE FOR THE FOURTH 

COEFFICIENT 

By 

P. R. Garabedian and M. Schiffer 

CHAPTER I 

INTRODUCTION 

1. Formulation of the problem. 

The family of schlicht analytic functions 

(1.1) f(z) = z t- su2 + a.z + a.z + 

in the unit circle |z| < 1 has been widely studied, and considerable interest 

has focused on the Bi*?berbash conjecture that la I < n , with equality holding 

only for the Koebe function 

(1.2)         *   - 2 , 2e
i9z* • 3e2i9z3 • he^J*  * ... . 

Bieberbach [2] showed that  Uul < 2 and Loewner [7] established the estimate 

la.I < 3 . The object of the present paper is to present a proof of the 
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THSOF^M.    For the general class of schlicht functions  (1.1) we have 

(1.3) |a 

with equality holding only for the function (1.2). 

While our method does not seem appropriate for all values of the index n , 

it is our beiisf that it could be extended to include the next few coefficients, 

although the significance of the results might not be commensurate *iih the 

labor and effort required. 

It is a consequence of the theory of normal families of analytic functions 

that there exists an extremal function f(z) for the problem |a> I • maximum . 

Without loss of generality, we can assume that the fourth coefficient of this 

function is positive, since otherwise we could replace f(z) by e  f (ze ) 

to obtain, for a suitable real value of © , a function with ai > 0 . In 

view of the known value of the fourth coefficient of the function (1.2), we 

can therefore assume that 

(1.10 a^ > h    . 

We refer to the literature [3; 12, 13, 15>] for the proof of 

LEMMA 1.1. An extremal function f(z) for the problem 

ai > 0 satisfies the ordinary differential equation 

1 1 
I 
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(1.5) zffjU)2 

*(•) 

3ar 

3 + 
f(z)J      f(0' 

2a, + a2 

—?dr 

2a, 3a. 
4r •*• —»- + —^ + 3a(. + 3a,z + 2a0z'' + z" •v )• 

-• 

\ 

The interior of the unit circle Iz j < 1 is_ mapped by the extremal function 

onto the exterior of a set of analytic arcs in the w-plane which satisfy the 

ordinary differential equation 

2 

(1.6) 
dw 

w~ 

1   3&2  2a3 ! a2 
3   2     w 

w   w 
< 0 

The derivation of the differential equations (1.5) and (1.6) is based 

on the method of interior variation." and it forms a decisive step in our 

proof of (1.3). Analogous differential equations for the functions maximizing 

the higher coefficients a  can be obtained with equal ease, and they are all 

satisfied by the Koebe function (1.2), with 9=0. 

It is easy to show [12, ill] that the extremal arcs satisfying (1.6) do 

not fork in the finite part of the w-plane, and we shall also use here the 

kno'.m result [12] that only one extremal arc extends to the point at infinity^ 

although this follows independently from calculations in the present paper. 

W-3 are thus able to formulate in simple terms 

LEMMA, 1.2. The extremal function f(z) maps the interior of the unit circle 

onto the exterior of a single analytic slit. There is a real-valued analytic 

function f (t) on the interval 0 < t < 1 such that the coefficients a9 » 

s, and ai  of the extremal function f(z) have the Loewner representation 

\ 
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(1.7) a2 - 2   j     ei^(t)dt    , 
0 

1 
(1.8) a3 - - 2   |    te2i? (t)dt + a2    , 

0 

\ 1.11 
(1.9) au-2   |   tVfWdfl.  |       /    t^^e^dt^ 

0 0      t.-t* 

3 
+ 3a2a    - 2a^     . 

Fbr the proof of Lemma 1.2 we refer to the literature [7, 10, 12, 16]. 

The formulas (1.7), (1*8), and (1.9) are due to Loewner [?], and the analyt- 

icity of his function k(t) = e ' • ' for the representation of the extremal 

mapping f(z) is simply a consequence of the analyticity of the boundary slit 

in the w-plane described in Lemma 1.1. 

Our first innovation is 

LEMMA 1.3« The coefficients a2 and a, of the extremal function f(z) 

satisfy two equations defined by the boundary value problem 

(1.10) a = - ^ k ,  b=-|tk2, 

(1.11) Im|t2k3 - atk2 • bk J   - 0      , 

(1-12) a(0)  = 2a2 ,    b(0)  *      3^     2 

I' 
T 

(1.13) a(l)   = 3 a2  ,     b(l)   -  a 
'3    > 

\ 
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for two unknown functions a(t) and b(t) on the interval 0 < t < 1 , where 

k » kCt) = e1 f '*' with ®(t) real, and where the dot indicates differentia- 

> tion with respect to t . 

i 

The proof of Lemma 1.3 is based en the extremal property of the coefficient 

ai  represented by formulas (1.7)> (1*8)» and (1.9) in terms of the function 

0(t) . Loewner's parametric representation [7 3 of schlicht functions (1.1) 

in the anit circle  |z < 1 shows that for any continuous real-valued function 

o>(t) the expressions (1.7), (1.8), and (1.9) define the first three non- 

trivial coefficients of a schlicht function. Thus we can substitute for ^(t) 

in these formulas an arbitrary expression of the form »(t) + rh(t) , where 

r is any real number and h(t) is an arbitrary continuous real-valued 

function on the interval 0 < t < 1 , and we will obtain a new fourth coef- 

ficient ai (r) whose real part does not exceed ai . It follows that for 

r = 0 we must have 

i 
• 

I 
for every continuous real function h(t) . Explicit evaluation of the condition 

(i.liO 3FRe{Vr)} = ° 

(1.110 yields 
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(1.15)    Im L ^ tV^hCtOdt • U   /     /    t/^Wf^h^d^dt, 
I   Jo 0    t^-t^ 

-1 \-*l 
8   J        J   ei,T(ti)t1e2i^tx)h(t1)dt2dt1 - 12a2   |   te2i*(t)h(t)dt 

0 0 

6a3    f   eif(t)h(t)dt 

0 > 

0    . 

Since    h(t)    is arbitrary, we deduce from (1.15)  the identity 

(1.16) 

We set 

r 1 

Im J t2k(t)3 + | k(t)    J   tjkft^dt^ 

^ t,=t 

+ | tk(t)2    J     k(t2)dt2 - 2a2tk(t)2 + a3k(t) 

0 

(1.17) 

(1.18) 

i(t)  * 2a2 - |    J   k(t2)dt2    , 

0 

1 

b(t) - a3 • |   J   t1k(t1)2dt1    , 

and we find that (1.10) follows by direct differentiation of  (1.17)  and (1.18), 

while (1.11)  is equivalent to  (1.16),  and (1.12) and (1.13) are consequences 

of the Loewner formulas (1.7)  and (1.8).    This proves the lemma.    It is an 

interesting unsolved problem to establish the main result  (1.3) by showing 

directly from Lemma 1.3 that    a- • 2    and    a    * 3 • 
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For the extremal function    f(z)   , we can express    ai     in terms of    a2 

and    a,    by using 

LEMMA l.U.    There is an angle Y   such that 

,n1n, , %    iY -iV      1 Jktf      2    -2i«K       S2  e3if (1.19) a3»-j-eT*a2e +^e - -^ e       T   - -^- e 

The derivative    f (z)    of the extremal function must have a zero on the 

unit circle at the point which corresponds to the finite and of the analytic 

slit in the w-plane bounding the extremal region.    We denote this zero by 

i*f* -e        and we deduce from Lemma 1.1 that it must be a double zero of the 

right-hand side of the differential equation (1.5)•    Thus 

(1.20)    -e"31*'   + 2a2e"2if   -  3a e^1*  t .la^ - 3a elf   + 2a"2e
2i'*'   - e31^   = 0    , 

and 

(1.21)    3e-3i*   - Ua2--
2i* * 3*f^  - */*  • l^e21*  - 3e^  = 0    . 

Suotracting (1.20) from (1.21) and dividing through by 6e    }  we obtain 

(1.19). A compart-on of (1.21) with (1.11) and (1.13) shows that ^= f (1) 

In addition to the results mentioned so far, we shall need the more 

elementary 

\ 
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EEMMA !.$•    The function 

_2 - 1/2 b        b        b5 
(1.22) f(z    ) • z • — + -4 * -4 * ... 

z        z 

is schlicht and 

(1.23) Z     (2V-  1)  b2 
V =1 ' 

2<1 

1 This is the classical area theorem and hardly requires proof here. Note 
i 

that for the extremal mapping, (1.23) is actually an equality. 

In order to exploit Lemma 1.5* we derive 

LEKM6. 1.6. The coefficients a^ , a, and a„ of the extremal function f(z) 

can be expressed in terms of the earlier coefficients a? , a, and ai  by_ the 

formulas 

(1.2lj) a5 " | a2aU + | a3 » 

/-. ic\ - 6      16 „2    3   2 k    3   1 5  6  -  2 - (1.25) a6 - y a3au - ^ a^ - j  a^ + j a^ - j  a? + ^ a2a3 * y a,, , 

/, oAx       2  5li        61i 3   k    3  UO 2 2  10 1* (1.26) a? = &lj - ^ a2a3au • ^ a^ - ? a3 • ^ a2a3 - y a2a3 

19 6  8  2-   2  -   a-i 
+ ol a2 " 3^ a2a3 + ? a3a3 + 55 a2a2 + 9 * 

This lemma is obtained by substituting the power series (1.1) into the 

differential equation (1.5) and equating the coefficients of corresponding 

powers of z on both sides. Higher coefficients could be obtained by 

/ 
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laborious calculations with the same procedure. Note that (1.2U) is the 

elementary result due to Marty [8]. 

In order to reduce the calculations required to derive Lemma 1.6, we 

use the expansion 

(1.27) 
1 _d_ 
H dz X* f(z)u  f(z)J   f(«) 

U + 2a2 

1  + 
1  % 
T " "ST z   z 

2 2 3 5 
•*• (ag - 2a2a^ - 3a.ai   • ka2ai   • 3a2a, - ka2a, • a2) 

2 ? ^ ^ 
(2a_ - iia2a, - 6a,a- • 8a2a^ - 5ai   + 2ha2a_ai   - l6a2ai   + ba. 

P p 1± f\ 
- 2l»a2a, + 22a-a, - 5a2)z • ...     , 

which is based on the theory of Faber polynomials. We substitute (1.27) 

into the left-hand side of (1.5) and multiply out the resulting power series 

in z to obtain 

(1.28) 
2a2  3a- 2 

-5 * —7- + -jp + 3a^ * (5a- - 2a2a^)z + (7a^ - 2a2a- - ^a.a^ + »*2% 
z z 

2 3 5    2 2 2 
T 3a2a_ - ka^a, + a2)z    + (9a7 - 2a0aA - 68^^ • ha0a.c - 9a)f  + 18 a, a,a) i_ - ^a2a, - oa-a^ + «a2a^ - yai   + ±oa2a,ai 

8a|ai   • k&* - l8a2a~ + lUaiJa- - 3a2)z^ + 

1       -a2       ^ai _ —    2 "? 
~5 + ~"2~' +    a    * 3% * 3a3z * 2a2z    * z z 
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2 1 
Equating the coefficients of z , of z , and of z      on both sides of (1.28), 

wfi establish successively the relation? (l=2Lj}i (1»25)- an^ (D,2£). 

The formulas (l.2h), (1.25), and (1.26) are used in conjunction with 

Lemma 1.5 to prove 

L04MA 1.7.    The coefficients    a2 ,  a,    and    ai     of the extremal function    f(z) 

satisfy the inequality 

(1.29) 1 > 1 
1 a2 + 3 

1 3    2 
2 a3 " H a2 

13 5     3 
2 % " H a2a3 + 15 a2 

+ 7 
11  „   3-^32  15 2    35 h 
20 a2a2* - 10 a3 * 5 a3 " 15 a2a3  155 a2 

* o 9 .    229 2   l -   51      81   2  181 3   313 „5 + 9 55 a3ah - 55o a2aii - T a2+ mo a2a3" n? a2a3+ sar a2a3" 179? a2 

+11 12    9 239  3      1    23   -    1   -    179 2- 
B al + 55 a2a3al " 3350 a2aU + 15 _ 155 a2a2 " U a333 + 555 a2a3 

.   13    3      U93    2 2A   157    U     ,   2087    6 
+ HUT a3 " TM a2a3 * 179? a2a3     5H5I5 a2 

To derive  (1.29), we notice that (1.22) yields 

3    2 5   -3 
(1.30)       bi B - ? a

2 > b
3 

= " ? a
3 

+ H a2 > b5 = " 2 3ii + H a2a3 " 15 a2 

! 
(1.31)       b   = - 1 3 3   2     15   2 35    U 

7 a5 * IT a2ali + 5 a
3 " 15 a2a3 

+ 125 a2 

(1.32) br-^a6+| a2a5 • g .^ - *g ^ - § a2a
2

3 • g a^ - $ a*    , 
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(1.33) bll " " 7 a7 + I a2a6 * I a3a5 + i *h - 15 a2a5 " T a2a3al* 

5 a3 ^ 35 „3a   105 2 2  315 h  . 231 6 
15 a3 5? a2ai* + "ST a2a3 " 2^ a2a3 + 1555 a2 * 

By recourse to tedious algebra one can substitute the expressions (1.2li), 

(1.25) and (1.26) into (1.30), (1.31), (1-32) and (1.33) in order to obtain 

formulas for the coefficients b..,b,, ...jb,,  in terms of a- , a, and at 

alone. These formulas, together with the first six terms of the inequality 

(1.23), establish the lemma. 

The remaining inequalities required for our analysis will be formulated as 

LEMMA 1.8. The coefficients a~ , a, and ai  satisfy the inequalities 

(1.3k) 

(1.35) 

< 2 

ai - 

< 3 

2a a + i3- a3 ^a2a3  12 a2 

2 
a2 " a3 

si 

< 1 

The estimates (L.3^) follow in a familiar way [7] from Loewner's formulas 

(1-7) and (1.8). A proof of inequality (1.35) can be found in reference [9], 

but for the sake of completeness we sketch here an alternate demonstration. 

It suffices to discuss the extremal problem 

I 
(1.36) r 13 3 

Re I aj. - 2a„a_ + To a? ^ = maximum . {% }' 

The extremal region for this problem is bounded by analytic arcs which satisfy 

the differential equation 



(1.37) 
w' 
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1       a2      a2 

w        w 
< 0     , 

analogous to (1.6).    Since tne left-hand side of (1.37)  is a perfect square, 

we can integrate in an elementary fashion, and we find that along the extremal 

arcs 

(1.38) Re /V 3/2 • 3a9w- V2)  « 0    . 
; 

From this relation and the Schwarz principle of reflection it can be established 

t.hat the only extremal functions for (1.36) are the Koebe function (1.2) and 

the mapping 

(1.39) -3 w = (z~J - 2 • z-0 3x- 1/3 

Both functions give equality in (1.35) and hence the bound is correct. 

We have now developed sufficient background to describe our proof of the 

conjecture (1.3). In the next chapter we use the inequalities (1.1*) and (1.29) 

to establish bounds on a2-2 and h"3 which are of the order of a 

hundredth. In the final chapter of the paper we show that if a? and a, 

are thus limited, then the equations (1.10), (1.11), (1.12) and (1.13) imply 

that &2 -  2 and a_ = 3 • This is enough to prove (1.3). The first part 

of the method amounts to solving the differential equation (1.5) by recursion 

in a power serieo. The second part consists in solving the non-linear boundary 

value problem of Lemma 1.3 by perturbations in the neighborhood of the known 

solution k = 1 . 



CHAPTER IT 

PRELIMINART ESTIMATION OF ag AND a 

1. Application of the triangle inequality. 

In this chapter we use the inequality (1.29) in order to restrict the 

region of possible values of the coefficients a_ and a_ of the extremal 

function. As a first step we introduce the new variable X  • a, - r ag 

and derive 

•a    o 
LEMMA 2.1.    If    A • a, - jj- a~ ,  then 

(2.1) 1 > -H •* 
A     * aii " ? a2 X 2 a2 

+ 7 
11 7    h      9  — °      3—      32      32 
?0 a2al " 3? a2 " W5 a2 " 10   A   * B" *    " H a2 A 

+ 9 Ii7    2 1-      153-2       11    5     ,31 .3      9      NX 

5Bo a2aU + T a2 " 5^ a2a2   - HUH a2 + (TI? a2 - IE VA 

5l  r-  81  v: 
" IHO a2 * * 112 a2h + 11 1 2   83  3    1   111  2-2 

% % + ISBo a2aU * IS * TI5o a2a2 

23     -       283    6      13 .3     l XT 
T55 a2a2 " H532 a2 + IHH x   " H *h 

.  ,9  a „        3-2      139   Uvv    .   37    2 7      55  a2x2 
* (53 V>J * 15 a2   - 5H5 a2)X   + 2B0 a2 * " 335 a2 * 

This lemma is a direct consequence of the inequality (1.29) when we 

substitute for a, the value 
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(2.2) \     3   2 
a3     X * IT a2 

Our aim in the present section will be to  show from (2.1)  that     ja_      is very- 

close to    2  .    We have 

LEMKA 2.2.    The terms 

(2.3) \\     *  3 
o i     I o 

alone in  (2.1) imply the estimates 

(2.U) la2| > 1.67      ,        |A| < -6U      . 

For the proof, we set 

(2.5) A = |a0|   ,   L -U| 

and we find by (1.1*) and (2.1)  that 

(2.6) 
1/2 

(1* - A2 - 3L2)     "" - 51/2(U - 1. 5AL -  .$k>) > 0 

Tfe ir^jcimize the left-hand side of  (2.6) with respect to    L    and find  for    L 

•   . - 1/2 
2L(1* - A* - 3L^) « 5^ "*    , 2       ^-"-i-l/Z. 

whence 
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,2\l/2 

1» • 15k' 

.2       .,2 
L , <l/2kf h-^z)        ,   h - A< - 3L< - U 7—7^7 j» -A' 

Therefore   A    will satisfy the inequality 

(2.7) 
. , 1/2 ? 1/2 

(§ + 3AZ)        (U - A2)        + A3 > 8 

This relation is not fulfilled in the interval 0 < A < 1.67 , and thus the 

bound (2.h) on |aJ is established. The bound on|?S is now obtained from 

the estimate 

(2.8) 31XJ 2 <h - A2 -<h - (1.67)2 - 1.2111   , 

and the lemma is proved. 

i<* LEMMA 2.3.    Let    a2 = Ae        3rd normalise the extremal function    f(z)     so that 

0 < * <  TT/3 .    Then 

(2.9) 0 < oC< .22     . 

The normalization is obtained by means of the substitutions f(i") or 

e'i9f(zel9) , 9 = - 2TT/3 ; By Lemma 2.2 

a^ - l.^a2 N - .5a2 < (.2Ji222)1//2 < .1*93 , 

whence 

\ 
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a»   - .5a; 2.L13 

and 

(2.10) sin 3* < -60k    , 

and (2.9)  follows. 

LEMMA 2.U.    The terms 

(2.11) bl      + 3 • 5k • 7 < 1 

alone in (2.1)  imply the estimates 

(2.12) |a2    >1.92    ,   |X|< .32U    . 

We adopt again the notation (2.5) and in addition we set 

(2.13) A"ar?a2^?a2 • M SH- 

Applying the triangle inequality to (2.11), we find 
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2 1/2 
(2.1U)     (U -A'-3L' - 5fe )        > (28) 

2    „.2      r<,2x-L/t _   ,rt0a/2 3   a a        3  fil*      9-2 
10 a2aU ' 5? a2  " HO a2 

1^2 
•IT*2/*" 10* + S V 

> (28)1/2    | A  cos* 3    U i •^•A    cos 1*<* 9   ,2 
50 A    cos 2*   - r AM - TS L cos 0 10 

3 T2 • rr L    cos 20J       , 

where    X • L e      .    We can set   «rt " 0    in (2.lU), since the right-hand side is 

an increasing function of e(   in the relevant interval    0 <U < .22  .    Indeed, 

we have there,   since    A > 1.67 , 

| A sin <* + ^ A    sin U<*  + -^ A2 sin 2 <X > 0 

Also we find 

3 I2 cos 29 - ^ L cos 0 » 3(L cos & . 1)2 _ 3 L2 _ _3_ ^ _ 3 L2 _ 3 
100    * 

and hence 

(2.15)       (U - kd - 
-2 ^2N 

1/2 
(28)1//2[1,?A 

L 2 
•n937?Aa - .225A   - .03 

- .25iM - .375IT3 > 0    . 
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tfe maximize the left-hand side of (2.15) and find for   M    the worst value 

-( 

28A2 - 71** - gl&2L2 

100 + 3$A2 

,1/2 

whence (2.15") yields 

(2.16) 
2    „ 1/2 1/2 

(U - IT  - 3IT)  (100 + 351 ) 

- 7l/2[2hA - 1.87S11* - .6 - U.$A2 - 7-5L2] > 0    . 

Maximizing with respect to    L      gives  for    L 

100 + 35A      .. ,7C • 2 j ~ 175    , 
h - A   - 3L 

or 

(2.17) L    = * - 8       2.2 

There are two cases, according as 

(2.18) A2<^ 

or 

(2.19) *2>f 
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In the first case, (2.16) reduces to the inequality 

^ - 2hk  + l.m$kU  + 2.5A2 <• .6 > 0 . 

1/2 
This inequality is not fulfilled in the interval 1.67 <A< (°0/l) '     , and 

thus by Lemma 2.2 the alternative (2.19) must prevail. But then L = 0 is 

the least favorable possibility and (2.16) yields 

(2.20)     [(h  - A2)(100 + 35A2)/7Jl/2 - 2liA + 1.875^ + 2u5A2 + .6 > 0 . 

In the interval (20/7)1' < A < 1.92 the relation (2.20) is not satisfied, 

and this establishes the lower bound (2.12) on A . The upper bound (2.12) 

on L follows again from our lower estimate on A and the inequality 

2       2 
3L < h - A • This proves the lemma. 

LEMMA 2.5. We have 

(2.21) 0<«< .10li , 0 < Im a2 < .208 . 

Using (2.3), we derive the inequality 

K ~ •* a2 
2l/2 

< 3L * (.8 - .2A )   < 1.222$ , 

whence sin 3oC < .30563 and the lemma follows. 



-20- 

LEKMA 2.6.    The terms 

*••• (2.22) |bl|2  + 3|b3|2 * *K 
? I      12 I     12 + 7!b7p + 9\b9\£ < 1 

alone in (2.1) imply the estimate 

i (2.23) a2|  > 1.95    • 

•• 

t 

l 
t 
#• 

We treat first the case     |9 ~1tfl\<  tr/ii , where again    X * L e      .    HLth 

this hypothesis we have    Re{a2 )v} < 0 ,  by Lemma 2.5,  and hence by (2.3) 

(.8 - .2A^)        >U - .$k*    • 

This inequality is not satisfied in the interval 1.92 < A < 1.95 » and 

therefore we can restrict ourselves in the remainder of the proof of Lemma 2.6 

to the case |Q -TT| > ff/U  . 

Since |XJ < .321* and A > 1.92 , we have 

Re{m 4 e"ioc<% - u> - h e_i*w - M*} > o > 

and therefore by (2.1) 
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(2.2h)       .. ^(l-'/J A2 - £ L2 - |K2
) >^I A2  cosoc + ^A COS 2<X 

•snrs- A      COS 
5QU 2«-^A5=oS^-Rs{fxe-^-^AV^,^AT-^A^} 

= H- A2 coso(   + J- A cos 2 oC - J^ A3 cos 2 oC - ^ A^ cos 1+ si 

- L|| COS(9 -<*)  - ^ A3 cos(2o< +9)  + ^ A cos 9 ~ S AL cos2 9 i- ^j AL] 

" ^J A2 cossC  + ^ A cos 2* - ^2 A3 cos 2<X  - ^ A5 cos k* - jjj-AL2 

- L|[| COSOC - ^j- A3 cos 2«  + g» A]cos 9 - £ AL cos2 9 

+  [| sine*  + ^L A    sin 2<X ]sin 9 }   . 

If    sin 9>0 ,  then    sin(9 •*<<) > 0 , since    J9 -TT|> TT/U , and we can use 

the formula 

|a^ - l.£a2X    -  .£a3 | « M 

to derive the estimate 

sin 3<* » (k ccs X   - l)sinoC < —--    . 
" -5A3 

Using this inequality, the estimate M< .251 based on Lemma 2.1*, and Lemma 2.5, 

we find the improved bound sinoc < .021* and this yields in turn 

/ 
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sin oC < .6673 3L 

when    sin 0 > 0 .    Also we find by completing the square that 

|| AL2 cos2 9 -  [| cos <* - ^jj A3 cos 2*  +^A]L COS 9 

14 r9 _ „.»,       n.3 _ ,^ i2 

-  .723215AL2 -  .1*906160, 

-  .1729A[1.28$7 ^^ + -36U286 -  .276786A    cos 2 *]c    , 

since    A > 1.92 .    The right-hand side of  (2.2£) is an increasing function of oC 

in the relevant interval    0 < c* < .101* ,  since 

>-gg-[icosoc+^LA-tgA^cos2ocr    , 

and hence  (2.2h) yields 

(2.25)    3d - V " -T" " TH        > !$ A2 cos oc + i A cos  2*  - |g A3 cos 2 * 

" OT A* cos ** * " IT? A1,2 " '6673I~^5 * |s] ML 

7A 

"TO  [|^«^A-^A3cos20<]2 

> .67lhA2 cosoC + .1U28A cos 2eC - .2733A3 cos 2<< - .02U£6A^ cos h <*. 
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- .67lilA2 sine*. - .2856A sin 2 <* +  .<&66A3 sin 2 <* + .0982ljA5 sin lot 

_ ..1729A ~ [1.2857 ^^ + .361*286 - .276786A
2
 COS 2*]2 > 0 

d*K A 

there. Hence we need only consider the case oC = 0 . Furthermore,, if we 

assume A < 1.95 and use the inequality between arithmetic and geometric 

means, we obtain 

.723215AL2 *   .ll906l6ML< l.lil027L2  * (.2lj5308)(.lQ2538)L2 

+ l|U5308 M2 ^ 1.9139(.7^L
2 + i.2^2)     . 

Thus we set 2N2 - .75L2 * 1.25M2 and (2.25) yields 

l/2 
i(l . J A

2 . 2N2) '    + 3.8278N2 > .67UJA
2
 •*• .li*28A - .2733A3 

3 u - 

* - 2 2 

- .021*564* - .1729A[1.2657A"-L + .361*286 - .2767861 ]     • 

2 
We maximize with respect tc K  and find that the least favorable value is 

N2 = .19621 - ^j- . 

Hence 

~t  - 
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(2,26) 1.9281*3 > l.lii9875A2 • .lli28A -  .2733A3 - .02l£6A5 

!   . 

•> 

\ 

2 2 

- .1729A[1.2857A  + .361286 - .276786A ] 

The final inequality (2.26) is not satisfied in the interval 1.92 < A < 1*95 , 

and therefore the lemma is proved. 

2. Estimation of imaginary parts. 

Our later estimates will be simpler to derive if we expand the main 

inequality (1.29) in terms of the differences between the coefficients a? , 

a, and a:  and the conjectured values 2,3 and h  . We have 

LEKMA 2.7. If 

(2.27) a, = 2 - <£ , a « 3 - 77  , a, = U + € , 2 - 2 - d    ,    a3 = 3-7? 

then 

/ 
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(2.28) 
>• 

f 

i 

« 

<!2 

i>h     1Xl2*-»l3J    i*!- 3J?2!2 * cc|3 X    3,,    1,    15 t2     3„ r     5 l3|2 

+ 7|3jl + 3.+  3=    11,+ 15x2     15 fy. . 3 2     11 x* ^ I5i2„     35r3      35 lU2 
+ 7|lod +2^+io^ + io€ + Td   -T*VF? " 20d£ + T5dV IS*   'T^  I 

|22lr_lr     13 „ . 51 ^ , hi        ll*9r2     75 X*. 51 s= „, 81 2      9 + W    7d " HT^+ TO7? * TO6  + lUo*   " UT7    lHo^ +^   * 2B*9?6 

229 r,       1022r3 + 5h3t2_       81 r2      229*2,       181 r3„ „. 1565 cU       313  r5 
"lU0de      T^*    + 112* V 112^   + &Ob€ - 22HM * W *     'I792a 

^ ,.121)13 r    23 T     31w+37=:     293c.   23ir     8Ul9«2     179 jr =     75 c „     1 ,,= 
* 12-lwa~S3d - TV To V 2io£+ m6b -TOT* - m*7! * m^n1?7? 

+ 55^2     12     13 r.      9 ^ . 35251 c3      nr2,,   . 179x2=     1*93 r„2 

+   13J + 239jfc      9^,     lfc8lcli     1570^,^93^2      239 c3* 
+ lEH  +^or£-^^£~ TTT^   ' 22V 1 * i3Wf   --3W£ 

157 <h.n + 208715      2087 ^612 

This lemma is proved by direct substitution of the new variables   a}  71 

and   €  into the inequality (1.29). 

LEM4A 2.8.    In the notation (2.2?),  set 

(2.29) 5=p-iP    ,   ^*q-iQ    . 

Tnen 
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0 < P < .078    ,    - .067 < Q < .076 . 

+ 1| P2Q , Wg p^p . & P3 . 3| p3p + 35 pp3)2 = 3U5Q . 1>5p(1 . 
i5f^¥^-I5r   "32 32 .5P) r 

f 5[l.5Q(l - .5P) - l.SP(l - 2.5p + .5q f .62^p2 - .208333P2)]2 

* 7[.3P(1 + 2^p - 12.£q - 1.8333€   • 6.25pq - 6.2^PQ - 21.87&' 

+ 7.291666P2 + 3.6h58333p3 - 3-6l;58333pP2) + 1.2Q(1 - 3.125p + »625q 

+ .78125P2 + .7812$P
2)]2    . 

In order to estimate the coefficients which appear here, we use the inequality 

(2.32)      £ + liq < 7p * 2pq - 2Pv *  6.5P    - 6.£p    * 1.08333pJ - 3.2&P' 

For the proof we have by Lemma 2.7. using only the imaginary parts <• of 

b    , b^    and    b_ , 

(2.31)  1 - J A2 > 3(- | P * | <<i  +1 PP)2 

• *- | P * | Q +% PP - I *> - I PQ - g P2? • & P3)2 

• 7<" A p - I Q + A Q " T Pp * T * + T * - if * * S*p " ¥ pqP " if p2Q 
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which results from (1.3$) when we make the substitutions (2.27) and (2.29). 

We shall also need the inequalities 

(2.33) £ >0    ,    p > 0    ,     q > 0    ,    P > 0    , 

which follow from (l.li),  from Lemma 1.8,  and from our normalization of the 

extremal function.    By Lemmas 2.5 and 2.6 we have 

(2.310 p < .0606    ,    P <  .208    , 

and thus 

'-• 

1 - .5p > .9697   , 

1 - 2.5p + .5q * .625p2 - .208333P2 > .81*1   , 

1 + 25p - I2.5q - 1.8333C + 6.25'pq - 6.2SPQ - 21.87$?' 

+ 7.291666P2 + 3.6158333P3 - 3.6lt$8333pP2 

> 1 + 3.l2£p - 1.5625p2 - 13.021P2 > .1*36   , 

ft? 

1 - 3.12^p + .625q + .78125P2 + .78l2$p2 > .813 

1 
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After these preparations, we can proceed to apply (2.31) systematically in 

order to prove the lemma. For Q < 0 we get 

.0U9U > 3(.5Q)2 + ^(l.U^UQ)2 > 11.32Q2 , 

which establishes the lower bound (2.30) on Q . On the other hand, if 

Q > 0 and F > .6Q , then 

,0k9h > 3(.3727Q)2 + 7(1.05UQ)2 > 8.193Q2 , 

while if    Q > 0    and    P < .6Q ,  then 

.0U9U > 5(1.&[.U + p - .3q - -37?p2 + .125P2])2 • 7(.97S6Q)2 

> 5(.57Q)2 * 7(.9756Q)2 > 8.287Q2    , 

by virtue of the inequality 

2 2 q + p   < Up + P 

resulting from (I.3U).    The upper bound (2.30) on    Q    follows from these 

estimates. 

To estimate    P , we must again consider several different cases.    If 

Q < 0  ,  then 

/ 
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.01*91* > 3(l.U5ii?)2 + 5(l.26ip)2 > lup2 

and there is no difficulty. If P < Q there is also no difficulty in view 

of the bound on Q already established. If Q < P < 1.34 we find 

.0l»9l* > 3(.95U55P)2 + 7(.88126P)2 > 8.1698P2 

and P < .076 . Finally, in the case P > 1.3Q > 0 we have 

.0U9U > 3(-5Q - 1.U5USP)2 + £(!.» - 1.2615P)2 * 7(.1308P + .9756Q)2 

lh.l*233P2 - 21.I*995PQ • 18.6625Q2 

= 8.23113P2 + 18.6625(Q - .576007P)2 

> 8.23P2    , 

and this serves to establish the bound (2.30) on P and the lemma. 

LEMMA 2.°» The increments q and £ of the coefficients a, and ai  satisfy 

(2.35) 0<q< .116 , 0 <•  € < ,U$    . 
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These estimates follow from inequality (2.32), which yields because of 

Lemmas 2.6 and 2.8 the bound 

C * 3.8788q < .Uh9h 

LEMMA 2.10.    We have 

(2.36) -  .059 < .75Q - P < .0li02    . 

We set    S = .75Q - P    and we find from (2.31)  that for    S > 0 

,0h9h > 5(1.93?US)2 • 7(1.3S)2 > 30.63SS2    , 

and the upper bound on    S    is established.    If   S < 0    and    - S > .3U3P , 

then by (2.31) 

.0U9U > 3(.66666s - .78788P)2 • 5(1.939Us + .66112P)2 

- 20.13965S2 + 9.7U78173PS + U.07U17P2 

> 1U.309S2 

and S > - .0^9 . On the other hand, when 0 > S > - . 3U3P , then S > - .027 

by Lemma 2.8, and this proves the lemma. 

/ 
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We close this section with a remark which will turn cut to be useful 
2 

later. In applying formula (2.31), we have estimated the term 1 - .2£A  by 

the number .0h9h  . If, instead, we make use of the fact that this term 

cannot exceed p , our present calculations yield the final 

LEMMA 2.11. Setting again S * .75ft - P , we have the inequalities 

(2.37)        P2 < .123p ,  ; Q.2 < ,123p ,   S2 < .0?p 

3. The discriminant condition. 
I 

In this section we develop a procedure based on Lemma l.li which yields 

| 
good bounds for q and £ when a bound on p is known. We derive first 

I 
i 

LEMMA 2.12.    The angle   V satisfies 

(2.38)       1.5 £   + 3q cosV - 2p cos 2 f = - (1 - cos<f)[(2 cos f - l)2 + l] 

+ (3Q - k?)sinV + hp(l - cosYOsin f 

and 

(2.39)        h(40 - - (|fe + §P +3P cos2lf)sinT+ Q - 5P • 5 P(l - cos3^)    , 

where 

(2.1*0) h(f)  = (1 - I cos2 V + | cos3 V)sin <P    . 

/ 
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Fcrmula (2.38) is obtained from (1.20) and formula (2.39) is obtained 

the imaginary part of (1.19) 1 

variables p , q , p , Q and £ . 

from the imaginary part of (1.1?) by replacing &2 , ^    and a^ by the new 

LBKMA 2.13. The angle ^ lies in the interval 

(2.141) - .122 < y> <  .087 . 

From the real peri of (1.19) we find 

3-q-ip cos 3?-|psin3y. 1 C0S1,T+ 2 cos 2 T + 2 cos 3 ^ 

= (^ * i 4 - p)cos y     , 

whence by Lemmas 2.6,  2.8 and 2.9 

3 - 1.9069 < li.225 cos *F 

and   |r| < 1.31 .    Hence for  V > 0    by (2.39) 

h(«P)<Q -^P+^p< ,078    t 

in view of Lemma 2.8.    But in the interval    .12l<  ip < 1.31    we find 

h(?) > .078    because of the definition  (2.1*0).    Thus   f < .121    and (2.39) 

yields 

i 
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h h(T)<Q-|p+ .03P < .056 . 

By (2.1*0) we have h(40 > .0^6 in the interval .087 < f < .121 and hence 

the upper bound (2.Ill) is established. 

If *f < 0 , (2.39) and Lemma 2.10 give 

h(f) >Q " 3P > " .0787 , 

and since    h(4') < -  .0787    in the interval    - 1.31 < *f < -  .122 ,  the lemma 

is proved. 

LEMMA 2.ill.    The quantities    p , q,?,Q    and   £  satisfy the inequality 

(2.1<2> |6 • 3q - 2p <|(3Q - llP)2    . 

Jbr the proof of this lemma, we combine  (2.38) and (2.39)  to obtain 

1.56   * 3q cos* - 2p cos 2*f « - (1 - cos if) [(2 cos* - l)2 * l] 

[3Q - UP * liP(l - cos*)J[3Q - IP •*• )4P(1 - cos-V)3 
•   x x — X*  

(2-8 cos  *   + 8 cos^*)  t- (1.^6 + 2p • Up cos^T) 

< - i:97(l - cos») +  <* - iff?; y203(1 - cos*)    # 

2 - 8 cos  V  T 8 cos  9* 

by virtue of Lemmas 2.8,  2.10 and 2.13.    But 
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     1 _ 1 „       U(l - cosf)cos2(f 

1 - U cos2?  + U cos3P 1 - h cos2 r + U cos3 r 

< U.12U(1 - cos?)    , 

and therefore 

1.56  + 3q - 2p < (1 - cos?)[- 1.97 +' 3q + 2.062(.236)2 • .Ul86(.0075) 3 

• |<a - ^)2    • 

The lemma now follows,  since the coefficient of    (1 - cos?)    on the right 
I 

is negative. 
I 

LEMMA 2.15.    We have 

(2.1t3) q < .05    ,    C < .1    . 

* 

These bounds result immediately from Lemma 2.lU and the inequalities 

(2.3h) and (2.36). 

U.    Linearization. 

In this section we refine our estimates of    p,q,P,Q    and   £   by 

expanding the fundamental inequality (2.28) and examining the quadratic terms. 

We have 

r 
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I3PIA 2.16.    The terns {2*22) alone in the Inequality (2.28)  imply 

(2.10:}    p > l(X).6^3p2 - 30.291pq * 3>.Olq2 * 13.7776 2 -r 33«55p£   • 32.S03q€ 

4 H6.98SP2 - I20.39I1PU + I6.?9^i2 + p[Iil-995p2 - 19$.01pq - 5-lOOq2] 
s 

* i*.2li3q3 * £[- ll.J71p2 - 121.1?9pq *  22.G99q2 - 28.239 €p • 3-885 €q] 

+ €[- 1?9.J*59P? * lBO-liSSJPQ - 32.3li3Q?] + p[52-9k2P2 * 95-328PQ - 5-37532J 

* q[- It6lt.27P? * 359-173P5 - 77-933i2] - 2it7-5ii8pl + 279-!i72p3q - 17-U53p2q2 

- 55.ilil€p3 + 58.59i«€p q * l£5.!i23£pP' -  58.59^qP   - 117-188£ pPQ 
• 

• P2[271.012P2 - 1*211.07^5^ * lliJi.6l^2] * p2[- 70-392F2 + 170.162PQ 

i 
- lMi.6l5i2l • 263.6U*pq?2 * l7.l53q2P2 - 25k.32lipqBi 

- na2(|^2,U2)[190|i!2 * 6b.6|ilf|* 107-3 |X|£i - 5 |<5|2£2    . 

- 
For each v > 1 we can write the coefficient b„ in ihe form 

hy ~   v* qK * hy   * 



' 

I" 

-36- 

where Jtv indicates terms cf degree one,    q      indicates terras of degree too, 

and    hv   indicates terms cf degree three or higher in the expansion of   bv 

as a polynomial in   S, ji , J , ~B   and  €.    In deriving (2.Ui), we use the 

in equality 

K| 2 t \M2 * »*{4«y} * *»{*»*»} 

and we exp&Bd in all detail the quadratic and cubic terms   \*v\       and. 

2R^|JL  qv I •    On the other hand, we work out explicitly only the largest 

contributions from the ten*    2Re I Jt JL I » and ire estimate the remaining terms 

of higher degree through the inequality 

(2.15)   ioee{(|6 - f ^ - |€)^I3} * ***{{& + 3V J>.5j *g€)(g J2^ 

II7,W     Slj-2       229T2C        1S1T3- ^ 1565 T^   __311T5-1 
T706)("ll23lf      *^oOJ   £    "a*   **"WS* l?92a    )J 

> - raax(|J| 2,   |TJ|
2
)[190 \i\2 * 6I1.6 |^TJ|* 107.3 \S\£] - 5 |«J|2€ 2 » 

in which terms of degree larger than four have been estimated ^ means of the        I 

known bound \S\ < .0988 . 

•. 
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FJHHI 2.1?.    The quantities    p , q , P    and   Q    satisfy 

(2.ii6)    p > 100.653P2 - 30.291pq * 35-Oliq2 - l$6.2p3 - 1*93-6?^ -»• 93.056P2 

- 101.81CK • la.68lQ2 • nin(0 , <.777PQ)    . 

Cur first step in proving tanma 2.17 is to show that the terms ix, solving £ 

on the right in inequality (2.Mil) are non-negative and can therefore be 

neglected.    This follows from the set of estimates 

13.777€*- 28.239PC2 • 3-885q€2 - $\S\2£2 >0    , 

32.&33q£ - 121.179pq€   * 22.099q2€   • 58.59*ip2q€   - $8.59liP q€. > 0    , 

8.55p€  - 11.071p26   - 5S.lli3p3£   • l65Ji23P2p€ - U7.l88PQp€ 

- 107.3 *ax<{J|2 , J>J|2)j5je > 0    , 

€[2Sp - 179.U59P2 * Ifi0.1i85rtj - 32.8k3Q2] >   €[25p - 120.32lfi2 - 59-136P2] > 0 , 

which depend strongly on Lesraa 2.11.    Bert we note that by (2«3l») and (2.2i3) 

q[li£Ji.27?2 - 359-173PQ • 77.933A
2
} * p2[70.392P2 - 170.162PQ * lMi.&A2] 

< 23-l»73P2 - I8.58toj + Ii.I»28Q2   , 
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V 

_- 

I 

since the quadratic forms in   P   and   Q    which appear are positive-definite. 

Also 

95.328pPQ * P2[271.012P2 - li2l|.07ljPQ + lWi.6l5Q2] - 2#u32hpqPQ    , 

> min(G ,  9^.328pPQ)     , 
i 
i 

•• 

and 

52.?U2pP2 - 5.375PQ
2
 + 263.6U;PoP2 + 17.U53q2P2 > - .326Q2 

Finally,  by the inequality between arithmetic and geometric means, 

max(|£|2 ,  \V\ 2) [190 \S\ 2 • 6U.6 \STj\ ] 

< (p2 * .123p)[2U6p2 + 32.3(P2 + Q2)] 

< 2U6p^ + 30.26p3 + •36(P<i * Q2)    , 

since    q < .8£Up    by Lemmas 2.11 and 2.lU.    Therefore the terms involving    P 

and    Q    on the right in (2.hk) exceed the quadratic form 

93.0S6P2 - 101.810PQ * la.68lQ2 + min(0 , 5.777PQ)    . 

It remains to estiinate the terms in    p    and    q .    We find 
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1.533p2q - 5-lOOpq2 + lj.2ii3q3 > 0    , 

i 
279.1i72p3q - 17.U53PV > 0    , 

11.73Sp3 - 196.5ii3p2q - l^.^pk > - 156.2P
3 - 1*93.6p*    , 

and thus Lemma 2.17 is established. 

$•• 

LEMMA 2.18.    From the Inequality (2.22) alone we have 

? 

(2.ii7)    p < .0109    ,    q < .0073    ,  € < .011*6    ,    P < .009U , -  .0081 < Q < .Olla 

>• 

By (2.1*6) we find 

p > 9h. 106p2 + [6.£li7p2 - 30.291pq * 35.0l*q2] - l£6.2p3 - 1*93.6pk > 82.827p2 , 

using the known estimate p < .0606 . Hence p < .01208 and therefore in turn 

p > 92.lUp' 

which establishes the upper bound (2.1*7)  on    p .    We have 

93.0£6p2 - 101.81PQ * Ul.683ft2 » 30.885P2 + la.68l(Q - 1.2213P)2 

13.833Q2 + 93.056(P - .5U701+Q)2    , 



i 
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• 
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• 
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and thus (2.1*6) yields 

30.88SP2 < p - 92.3J4P2 < ,0027133 , 

13.833Q2 < P - 92.liiP
2 < .0027133 . 

The upper bounds (2.U7) on P and Q follow. Pbr the lower bound on Q we 

can U3e the estimate 

lil.681Q2 < .0027133 , 

since only negative values of Q are relevant. To estimate q and £ , we 

note that 

93.056P2 - 101.81PQ + 2a.68lQ2 + min(0 , 5-777PQ) > 71.5S2 , 

whence by Lemma 2.17 

71.5S2 + p < ^~£ < .0109 

Lemma 2.llj now gives 

1.5€   * 3q < 2p + 8S2 < .0218    , 

and tnis estima+e suffices to complete the proof of Lemma 2.18. 

s 
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1 i 

Thus far we have made no actual use of the formula (1.26) for the coef- 

ficient    a_ , and, indeed, we could finish the proof of the main theorem 

without recourse to terms involving    a7  .    However,  it is a simple matter to 

improve our estimates at this stage by using (1.26),  and we proceed to do so 

in order to throw additional light on the inner workings of our method. 

LEMMA 2.19.    The complete inequality (2.28) yields 

(z.hb)   p > 97.58lp2 • 202.35(q + .37685e  - .7l86l7p)2 

+   £[h9.9h + 6.h£2€   * 266.l6p2 - 193-031pq - 33-2£2q2 - 25.l88p£   + ii.?li3q€ 

+ 3.836C2 - 269.829p3 + 58.59Up2q - 523>k88p2 •* li5l.313PQ - 55-^72Q2 

+ 809.1l88pP2 - 58.59UqP2 - 117.l88pPQ]    +   P2[272.955 - 926.2*02p - 1001.895q 

- 308.575P2 + 338.69i*PQ • lliU.6l5Q2 + 266.66lip2 + 2063.95lpq + 17.i*53q2J 

- PQ[531.176 - 2387.998p - 592.236q + 21l8.l2i2p^ + 25lu32lipq] 

+ Q2[317.100 - 7S6.08Up -• I86.0l8q - lWj.6l5p2] - 6l5.35hp3 + 921.731p2q 

- 29u.6pq2 - 73-386q3 + 219.687p    - 320.63p3q - 17.^3p2q2 

-  [.0028 €2 t- .0332p€   * 3«37?p2 - 528.7p3 •*- 20695.3p^]    . 

'*V 
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This lemma is proved in the same way that we proved Lemma 2.16. The 

quadratic and cubic terms on the right in (,2.1i8) are obtained by straight- 

forward algebra, and higher degree terms which h«>.ve not been worked out 

explicitly are estimated by (2.1*5') and the inequality 

1*9372-2       239T3r    ^   1^7TU= ^ 2087T5     2087T6o 
+ T3HHd   1    " 3355* €   * I792"d 1 + 5175*  " WK2d >\ 

> - max(|5|2,|7||2)[391.1i max(|^|2, |yj|2) -r 175-76 max(|^|,|7||)  + l8.l£2] 

Hence the total contribution of the terms not calculated explicitly exceeds 

- max(|5|2,|Tj|2)[6U6oax(|5j2,|>||2) + 2836 max(|J|,|7||) * 23.162] 

> - .0028 €2 - ,0332p£  - 3.377P2 + 528.7p3 - 20695.3p^   , 

since we have the estimate 

maxCl^l2^-/!)2) < .0723p - 5.66p2 < .000117 

based on Lemma 2.17. 
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LEMMA 2.20.    The quantities    p , q , P , Q    and £ satisfy the inequality 

(2.1i9) P > 9U.2p2  • 255P2 - 501PQ + 303Q2    . 

To prove this lemma, we remark first that 

(2.50)    202.35(q • .376856   - .7l86l7p)2 - 312.233P3 * 868.?83p2q 

60li.622pq2 - 85-866p€2 + 327«l*75p26   - U55.70l;pq£ 

(202.35 - 60l*.622p)(q * .376856  - .7l86l7p)2 > 0 

Thuc whsn we subtract the quantity on the left in (2.50)  from the right-hand 

side of (2.1*8), we either inprove or do not alter the inequality (2.1*8). 

After the subtraction, the terms involving   £ which remain have a non-negative 

sum and can be neglected, since by T*9nma 2*17 

[1*9.9p + 6.1*1* €  - 6l.3l5p2 • 262.673pq - 33.252q2 + 60.6?8p£   • l*.7li3q€. 

+ 3.836€2 - 269.829p3 * 58.59Up2q - 523.1i88P2 + l*5l.313PQ - 55.1*72Q2 

+ 809.1*88pP2 - 58.59UqP2 - 117.l88pPQ] > 0    . 

3 

A 
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The terms of degree three or more in   p    and    q    alone which are left also 

form a non-negative contribution and can be neglected,  since 

225.579P3 + 52.7li8p2q + 310.022pq2 - 73.386q3 

- 20li75.7p    - 3?0.63p3q - 17-'!53p2q2 > 0    . 

2 
Thus the term in p  on the right in (2,h9)  is all that remains, except for 

terms involving P and Q . These terms in (2.li8) are estimated to exceed 

the quadratic form 

255P2 - 501PQ • 303Q2 , 

since 

- 308.S7SP2 + 338.69kPQ + lUn6l$Q2 > - 7p 

2 
and since we have diminished the term in Q  so generously that we are sure 

to have neglected a positive-definite form in P and Q . This proves the 

lemma. 

LEMMA 2.21,    The estimates 

(2.51)        P < .0107 , q < .0071 , 6 < .0lii2 , P < .0075 , -  .003 < Q < .0069 , 

|s|   < .0036 



* 
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are satisfied. 

The estimate (2.5l) on p follows immediately from (2.1*9). To obtain 

the upper bounds on P and Q we complete the square in (2.1*9) to find 

U7.9P2 < p - 9h.2p2 < .00265U , 

56.9Q2 < p - 9ii.2p2 < .002651 . 

For the lower bound on Q we need consider only the case Q < 0 , and hence 

we have directly 

^.2 
30ST < .00265U . 

Fbr S we find 

- 
i 

! 
i 

whence also 

205S2 < p - 9U.2p2 < .00265^ 

2 9 
8S • 2p < 

- 9HT2" » 

and the bounds on q and £ follow by Jjemma 2.lU. This proves Lemma 2.21. 

We can now formulate the principal lemma of this chapter, upon which the 

remainder of the proof of (1.3) will be based. Using the inequalities (2.51), 

we obtain 
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IEMMA 2.22. The combinations of a. and a  appearing in the boundary con- 

ditions (1.12) and (1.13) satisfy 

(2.52) 0<Re/l* - 2&A   < .02lli    ,    0<Im{2a2}   < .015    , 

2 2 , in    2a, + a_\ f 2a^ + a2 ^ 
(2.53) 0 <Re[=j- =S—- ) < »019    >    "  '°02 1 lm\—*~3 j - *0iJl6    » 

(2.51) 0<ReJ| -•!* a^   < .0lli3    ,    0 ^ Im/| a2 \  < .01    , 

(2.55) 0<Re|3 - a/t  < .0071    ,    -  .003 < Im {»-}   < .0069    . 

Although it plays no part in the proof of the main theorem,  the following 

j lemma, making explicit the bound we have obtained at this stage on    ai   , is 

of interest. 

LEMMA 2.23.    From the discriminant condition (1.19) and the inequality (1.29) 

based on the area theorem (1.23) and the recursion formulas  (1.2b),   (1.25) 

and (1.26), we get the bound 

[ 
(2.56) |ajJ < U.01U2 

on the fourth coefficient of schlicht functions (1.1). 

\ / 



CHAPTER HI 

\ I0CAL UNIQUENESS 

1. The fundamental equations. 

By means of a non-Linear boundary value problem in ordinary differential 

equations ve  developed i.i Lemma 1.3 of Chapter I a set of equations for the 

coefficients a_ and a, of the extremal function f(z) . We observe that 

this set of conditions is indeed fulfilled in the case of the Koebe function 

oo 
(3.1) f(a) - Z  n zn    , 

n=l 

i 

for which we have    a? 
a 2  , a, a 3    and 

(3.2) k(t)  5 1 ,   a(t)  - h - \ t ,  b(t)  - ^ - i t2 

Our problem is to investigate whether there exist other solutions of the 

same set of equations. It will be snown in this chapter that when the values 

a~ and a, are sufficiently near to the values 2    and 3 >  respectively, 

these latter values are the only ones compatible with the above, boundary 

value problem. In order to give this uniqueness proof, some formal prepara- 

tion is necessary. 

We put 

(3.3)     k = e1*, a(t) = u(t) • iv(t) , b(t) « x(t) + iy(t)  , 

i. - j    ana 

\ 
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and we bring the boundary value problem of Lemma 1.3 into the real form 

(3.1) u'(t) • - i± cos f   ,       x'(t) - - 4 t cos 2<p     , 

(3.5) v'(t) - -~ sin f   ,       y'(t) - - |t sin 2f      , 

(3.6) t    sin 3f  - t(u sin 2 f + v cos 2 f )  + x sin <p + y cos p - 0    , 

with the boundary conditions 

(3.7) u(l)  = | u(0) , x(l)  - |x(0)  - J [u(0)2 - v(0)2]    , 

(3.8) v(l) = | v(0)    ,    y(l) - | y(0) - \ u(0)v(0)  . 

It will be useful to introduce the functions 

(3.9) p(t) - ^ t2 - 8t - ^ 

and 

(3.10)   U(t) » u(t) - U  • | t   ,   X(t) = x(t) - ^ *i t2 

The polynomial (3.9) will occur frequently in our estimates; it is positive- 

definite and attains its minimum 1/3 at t • 3A • The functions (3.10) 

represent the deviation of the solutions u(t) and x(t) from the corresponding 

1 
\ / 
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known solutions (3.2). By means of the above notation, we can bring (3.6) 

into the form 

(3.11)  (sinf>)[p(t) + X(t) - 2tU(t) - 16(| t2 - t)sin2 -£ + l6t2 sinh  -| 

+ UtU(t) sin2 -£ + 2tv(t) sin <p - y(t) tan =£] - (tv(t) - y<t))  * 

We have further the differential equations 

(3.12)       'j'(t) »| sin2 -|   ,   x'(t) -^ t sin2f>  . 

The structure of equations (3.11) and (3*12) indicates clearly the 

estimation procedure to be followed in our uniqueness proof. We will be 

able to estimate most quantities easily if an estimate of the form 

(3.13) |sin -f-l 5 4 

with sufficiently small o   is available. We shall make this assumption in 

the following section and derive from it various consequences. 

2. Estimates by means of P 

By (3.6) and Lemma 2.22 

|tan <p(0)| »-$$}-f -00U5 , 

/ 
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and hence either      \<p(0)|  < .00U5    or      |<p(0) -Tr| < .00li5 •    In both cases 

we deduce from (3.11)  and Lemma 2.22 that 

2.1i|sin f>(t)| < .01 

in the interval    0 < t < .1,    Thus if     j<p(0) -tT*|< .00k£ , we would have 

cos  <p (t) < 0    in the interval    0 < t < «1,  since   p(t)    is continuous.    By 

(1.7)  this  tfould imply    Re (a2"l  < 1.6 , which contradicts (2.$2).    Thus 

\f(0)\ < ,00li$ . 

We take   P  in the interval    .01 < P< 1    and we deduce that 

Let next    [0,1,]    be the largest interval in    0 < t < l/2    for which the 

inequality (3.13) is still fulfilled.    We deduce from  (3.12) at once 

LEMMA 3.1.    We have in the interval    0 < t < T 

(3.lij) 0 < TJ(t)  - U(0) < | t f2    ,    0 <X(t) - 1(0) <| t2f2 

The left-hand inequalities hold in the entire interval 0 < t < 1 . 

From the differential equations (3«5) for v(t) and y(t) we infer 

/ 
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LEMKA  3.2.    We have in the interval    0 < t < T, 

(3.15) |v(t) - v(0)| <%ft      ,       |y(t)  -y(0)j < 4 f t2 

We utilize next the fact that (3.7) implies the boundary condition 

U(l) • 4 0(0) . By (2.52), U(0) < 0 and, since U(t) increases monoton- 

ically, we have the estimate 

(3.16)      U(0) < U(t) < I U(0)  ,  0<t<l 

We now rewrite (3*11) in the form 

(3.17) y(t) sin? - tv - y , 

with 

(3.18)       F(t) - p(t) + 1(0) t  [X(t) - X(0)] - 2tU(t) 

) 

+ l6(t - i± t2) sin2 -^ • I6t2 sin* -^ + UtU(t) sin2 -£ 

• 

+ 2tv(0) sin 9 - y(0) tan -£ * 2t[v(t) ~ v(0) ] sin <f -  [y(t) - y(0)] tan -f . 
2 

Using Lemmas 3«1 and 3.2, and (3.18), we obtain 

(3.19)  F(t) >p(t) - |X(0)| - 2t|v(0)|f -M2il^.|f
2
t
2 - f - f I m 

\ / 



-52- 

for t in the interval 0 < t < T.. . Since p(t) attains its minimum at 

t "  3A > this yields for 0 < t < T.  the estimate 

«*>»§-.x«»|-K0),r -M^-lf-l-i^   . 

Applying Lemma 2.22 and taking    P • 1/7  * we obtain 

LEMMA 3.3.    In the entire interval    0 < t < T      in which 

(3.20) |Sin-£|<^ 

holds, we have 

(3.21) F(t) > .629    . 

Thus far we have made estimates which are valid in an interval extending 

to the right from t • 0 . However, since the boundary conditions on 

u(t) , v(t) , x(t) and y(t) yield as much information at the point t * 1 

as they do at t x 0 , we proceed to establish similar estimates valid in 

an interval extending to the left from t = 1 . 

From Lemma 2.13 and the identity  ^(1) * f , we know that \f (l)| < .122 . 

By (2.39), (2.1*0) and Lemma 2.21 we can improve this bound to obtain 

I <p (1) I <  .008 . Since we take P in the interval .01 < P < 1 , we find 

isi„±^.|<4 , 



-?> 

and we denote by [T0 , l] the largest interval in 1/2 < t < 1 for which 
2 

the inequality (3.13) is still fulfilled. From (3*5) we derive 

LEMMA 3.U. We have in the interval T« < t < 1 

(3.22)   jv(t) - v(l) | < § f (1 - t)  ,  |y(t) - y(l) | < |(l - t2) P 

We now replace  (3«l3)  by the equivalent formula 

F(t) = p(t)  i X(0)  *  [X(t)  - 1(0)] - 2tU(t)  + l6(t - = t2)sin2 -£ 

* l6t2 sin1 ~Y + IitU(t) sin2 -£ •»• 2tv(l)  sin f 

- y(l) tan -£ • 2t[v(t) - v(l)] sin <p -   [y(t) - y(l)] tan -£      , 

and we are led to the estimate 

y(t.) >2| t2 - 8t * ^ - |X(0)|  - U f2 max(0 ,  t - ^ t2) 

2 -2Wl)lft._i^4f2ta.t).f(1.t2)_I^ 

in the interval    T~ < t < 1 .    We set    P • l/7    again and find that by 

Lemma 2.22 

F(t) > 3.307 - 8.0573t * 5-39U5t2 - max(0 ,  12-,^l6t t) > .298 

I 

\ / 
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i since the minimum of the quadratic on the right occurs at approximately 

t " .7li6807  •    Thus we obtain 

LEWMA 3»5>.    In the entire interval    T« < t •< 1    in which (3-20)  holds, we have 

(3.23) F(t) > .298    . 

3. Integration of the differential system. 

Let us define a new function of t by 

(3.2li) £j(t) « tv(t) - y(t)  . 

Then equation (3^17) may be written in the form 

- 

and equations  (3«5)  lead  bo  the system ox differential equatdons 
i 

ft i&\ dv =      _J* ,.r+\ dcj - w+1      ,,f+<»  8t sin2(<p/2) (3.26) ^--^^.^ct)    ,   Tr-v(t)-o(t)  ^y'--   • 

We introduce the functions 

I <3-2?)    rx(t) - exp[§ / t °L^lf/2) dt] , r2(t) -- exp[- § / * Sjfcfl dt] 

f ° * 
and we define 

i 

< 
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(3.28) wj(t) - Pj(t)«(t) , j - 1 , 2 . 

Then for both j • 1 and j = 2 the system (3*26) reduces to 

. dw 

(3-29) dT'B-Rj<t)wj    '   Hr = rj(t)v   • 

with 

| <3-30> Ro(t)" -mrfpT   • 

We use the assumption (3.20) that   P • l/7 , and we find 

(3-31) 1 < rx(t) < 1.003    ,    0 < R^t) < 2.12 

in the interval    0 < t < T.    and 

(3-32) .983<r2(t)<l    ,    0 < R2(t) < Ii.552 

in the interval T2 < t < 1 . 

In order to simplify our calculations, we make a slight change of scale 

by introducing the new independent variables 

t 1 

(3.33) s1 = j ri(t)dt , s2 - 1 - J   r2(t)dt . 

\ / 
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I 

In terms cf the new variable s. the system (3*29) simplifies to 
v 

(3.3k) 

,     R.      dw. 
_2L - - _iw  , -J » v , 

or 

(3.35) 
dw.  R 

 S * r1 WJ " Q 

Thus we bring our differential system into a form convenient for application 

of the Sturm-Liouville theory. 

We shall prove 

LEMMA 3.6. The solution w (s ) has at most one zero in the interval 

[0 , s.. (T..) ] and the solution w?(s_) has at most one zero in the interval 

[s2(T2) , 1] . 
f IT 

Suppose there were two points s  and s. at which w  vanished in 
V V J 

one of these intervals. Then we '/ould find by integration by parts the 

identity 
ti n 

s. 

f w:(s.)
2df, - f Rj 

I t * 4 j(SJ)dSj ' 

i 

and therefore by (3.31) and (3.32) 
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/ ("j j'S 
I 

—i-* < l*-7 , w (s') = w,(s") « 0 . 

I 
s. 
J 

/ 

Cn the other hand, it is well known from the calculus of variations that the 

2, "   »%-2 left-hand ratio is at least TT (s. - s.)  . Hence 

^<(SJ".^)
2
<1.1 , 

which is absurd. Thus w.(s.) vanishes at most once in the interval consid- 
J J 

ered. The lemma implies, of course, that w(t) vanishes at most once in the 

corresponding intervals. 

We state now 

LEMMA 3.7.    In the interval    0 < s.. < s  (T )    we have the estimate 

(3.36) Iw^Jl <Sl|v(0)i +  17(0) I     . 

Observe, at first, that by definitions (3.2k) and (3.28) and by the 

differential equations (3»3M> W8 have 

(3.37) w1(0) - - y(0) , w^(0) * v(0)  . 

\ / 
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L We havft always assumed    v(0)  * Im/2a2"| > 0    and we shall now deal with th* two 

possibilities    w., (0) > 0    and   w.. (0) < 0 .    We shall use as function of com- 
, ft * 1       ~ 1 

1 parison a solution of the differential equation 
.» 

. 

d*"W 
(3.38) —i «• (l.U6)V -0 . 

ds*        x 

1 
•; 

•--. 

i 

', 

« 

We require that the solution W-jCs..) of (3-38) have the same initial values 

for s = 0 as W-.(s..) , and since by (3«3l) 

=i< (1.^6)2 , 

we will have | W-,(s ) | < |w (s ) | as long as W,(s ) does not changs its sig- 

We have clearly 

W  = Wl(0)  cos(1']i6a2)  * T3S Wl(0)  a±a^1'll6a2)     • 

PTl. 

Let us start with the case    w.(0) > 0  .    We see by direct calculation that 
1   - 

W, (s..) cannot vanish before the point sn • sn(Tn) . Thus we are also sure 
11 1   1 1 

that w,(s1) will remain non-negative in the entire interval. On the other 

hand, w1(s^) is always convex towards the s -axis and hence it can be 

estimated by the inequality 

w1(s1) < w.^0) + 8^(0) , 

which proves the lemma in this case by virtue of (3«37)« 
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* 
*' We have 

In the case    w. (0) < 0 ,  the solution    w (s )    will increase at first 

:ecause    w (0) > 0  .    Let    s..    denote the first point at which it vanishes. 

(3=39) 1*^)1 f |w(0)|     ,      Ois1<B1 

We can write because of  (3*35) 

s; s, 
nip o   p 

w*(s*)  = w^(0)   • J     ^|wi(s1)|dSl < w|(0)  * |Wl(0)| J     J: d81 

For sn > sn we use the fact that w,(s1) must stay positive because of 

Lemma 3.6 and is, therefore, concave. Thus 

s* 
/  R 

0 

Observe that in view of the estimates (3*31) we have 

r  R 
(sl-8l^ J  r7 dsi 1 X ' ° < sl ^ si 1 sl<Tl> 

0   X 
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Hencs the inequalities (3-39) and (3*^0) imply the desired result (3*36). 

Thus the lemma has been proved in all cases. 

Since by the definition (3-33) we have the inequality 

sx(t) < trx(t) , 

we may bring (3»36)  into tb-3 "era 

(3.1x1) |CJ(t)| < t|v(0)|   • |y(0)|     . 

We can now use formula (3.??) in order to estimate sinp by means of (3*^1) in 

the entire interval [0 , T.] . We find by use of Lemma 2.22 the inequality 

| sin <p | < .035lu , 0 < t < T  . 

• 

•*. ^ 

In the same interval, consequently, 

| sin •$• | < .0176 . 

Thus     |sin(<P/2)|     can never attain the upper limit    l/(2P)  * l/(lk) in the 

interval    [0 ,  T, ]    and hence there is no point in the interval    [0 ,  l/2] 

where the estimate (3*20)  could break down.    Ttms    T    = l/2    and we have 

established 

J  
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s' 

• 

4 

: :- 

| 

i 

i 

\ 
\ 

LEMMA  3.8.    The estimate 

(3.112) |8in-f|    <^i 

(holds in the entire interval    0 < t <• .1/2  . 

We proceed to prove 

LEMMA 3*9. in the interval s0(Tp) < s2 < 1 we have 

(3.^3) |w2(s2)| < |w2(l)| + (1 - s2)jw'(l)| 

Using the definitions (3-2U) and (3.28) we find 

(3.1*5) w2(l) = v(l)  . 

We know that v(l) • Jmnk/3)ai^\   t. ° »  whence w (l) > 0 , and we have to 

distinguish the two cases w(l) > 0 and w(l) < 0 . 

For w(l) < 0 we use as a function of comparison the solution W9(s9) 

of the differential equation 

d2w2        2.  &  + (2.152)% » 0 
ds^ Z 

(3.Ui) w2(l) - v(l) - y(l)  , 

and using the differential equations (3«3b) we find 

/ 
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which has at s_ = 1 the same initial values as Wp(s ) . Since by (3»32) 

S < (2.152)2  , 
r2 " 

we will have |W^(so)| <  |w„(sj| as long as W2(s ) does not change its 

sign. Clearly 

W2(s2)  « w2(l)cos(2.l52[l - s0])  - 
w0(l) 

21}       2.152 sin(2.l52[l - s_])     . 

But neither the sine nor the cosine here change their sign if    s„ > 2 (T.) - -1-/2 

Hence in the interval considered    w?(s-)    will remain negative and will be 

convex from below.    Thus we obtain the estimate 

|w (s  )|   < |w  (1)1    + (1 - s )w'(l)     , 
2i"2

x 

which proves the lemma in this particular case. 

We discuss next the possibility w_(l) > 0 . As s? decreases from the 

value s_ - 1 , the function w2(s„) will at first decrease, because w„(l) > 0 . 

Let s? be the first point at which w„ vanishes, if such a point exists. 

In the interval s? < s2 < 1 we have 

(3.1*6) 0 < w2(s2) < w2(l) 

At the point s. we find by (3*35) 

1  
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| W2(S2> =W2(1) + J  rf W2ds2  ' 
*  2 

S2 

and hence 

w2(s2) < w2(l) * w2(l) J jr ds2 . 

*  2 

S2 

A 
In case s (Tg) < s2 < c2 we have w2(s2) <0 by Lemma 3.6, whence w2(s2) 

is convex and 

1 
C  R 

|w2(s2)| < w2(s*)(sj-s2) < w2(l)(s2-s2) + w2(l)(s*-s2) I — ds2 . 

Ely (3.32) 

*      / R2 (S2 ~ S2) J  77 dS2 1 X » 2 * 
S2 

I 
and therefore we obtain the estimate 

C3.U7) |w2
(32)' -w2(l) •W2(1)(B2 " S2} 

Inequalities (3.U6) and (3«^7) complete the proof of Lemma 3«9. 

In view of the inequality 

1 

1 - s2 « J r2dt <•  (1 - t) 

t 

and the definition (3.28), we deduce from (3*^3) that 

* 
S2 
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• 983|C(t)j < |w2(l)| • (1 - t)|v2(l)i 

for   T2 < t < 1 .    Thus by (3»25),   (3.i&) a•* (3-U5) 

|8inf(t)| < 3.UlU[|v(l) - y(l)|   • ^|v(l)|] 

3.UlU[l|p-Q| *§|P|] 

in this interval.    But Lemma 2.21 yields the estimate 

|§P-Q|* |W   "5|S|   +||?l< .0098    , 

r 
and therefore 

|sin -|- | < .0168 
9 
8 

in the interval    T0 < t < 1 .    It follows that     |sin(<p/2)|     never attains 

the upper limit    1/(2 P)  = 1/(1^)    in "the interval     [Tg ,  lj ,  and hence 

T    - l/2  .    Thus we have established 

LEMMA 3»10»    The estimate 

I (3.U8) |-ln4l  «^£ | 
t      • 

I 
. 

holds in the entire interval    1/2 < t < 1 • 

3 

1 



•65- 

Lemmas 3.8 and 3*10 establish that the inequality (3.13) holds throughout 

the interval 0 < t < 1 with P • .0352 . From this stage forward we shall 

use the functions r (t) , R, (t) and w (t) in the entire interval 

0 < t < 1 and we therefore introduce the simplified notation 

(3.1*9) - r1 , R • R1 , w » w.^ , s * s_ 

We have 

LEMMA 3.11.    In the interval    0 < t < 1/2 

(3.50) 0 < R(t) <2s01    , 

and in the complete interval    0 < t < 1 

(3.5D 1 < r(t) < 1.002    ,    0 < R(t) < h'liS 

By means of cur revised estimate (3.^2), we can sharpen (3.21) to obtain 

in the interval 0 < t < l/2 

F(t) > .6Ii5 , 

and the bound (3-50) follows by (3.30). To establish the bounds (3«5l)> we 

use (3.23) and (3.27) directly. 



• 

t 

-66- 

km     The boundary value problem. 

After the preceding preliminary estimates we come now to the uniqueness 

proof for the non-linear boundary value problem of Lemna 1.3. 

We return to the differential system 

(3.5?.i j£ - - R(t)w , §•  = r(t)v 

I 
with the boundary conditions 

(3.S3)    v(l) = | v(0) , w(l) = r(l)[| v(0) + \ w(0) + J u(0)v(o)] , 

which we obtain from (3.8), (3«2h), (3.28), (3.29) and (3.1*9). By integration 

by parts we derive the identity 

*2 t2    \ f f (3*^)   J  R^TT (dT)2 dt = " [v(t)w(t)]    * j  r(t)v(t)* dt , 
-I *i  h 

or5 with t. = 0 and t ~  1 , 

l 
(3*^     J RTE7 (dT)2 dt + I r(Dv(0)2 + [r(l) - l]v(0)w(0) 

0 
1 

* J r(l)u(0)v(0)2 « J r(t)v(t)2 dt . 
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We have 

LBTMA 3*12. A non-trivial solution v(t) of the .system (3*52) can vanish at 

most once in the interval 0 < t < 1 . 

In fact, suppose that v(t..) = v(t„) * 0 , with 0 <  t < t? < 1 . 

Using identity (3«5U) we find 

t2 t2 

and in view of the estimates  (3«!?l) we obtain the inequality 

*2 h 
(3.56) ^ /    (I>2 « < 1.002   / v    dt    . 

h *1 
Using again the inequality 

t, t 
f 2 2   r 
l ,dvx2 ,. ^    TT     ! 

^    ~(t -t)2 J  "    ' tx       
(t2 V tx 

which holds for all continuously differentiable functions v(t) vanishing at 

t. and t9 , we derive from (3.56) the absurd relation 
2 

TJ^l1'002^ -tx)
2< 1.002 . 

Thus the lemma is proved. 

From the beginning we have made the normalization v(0) > 0 . If v(0) • 0 

then by (3.53) we would also have v(l) = 0 , and therefore v(t) 5 0 by 
i 

Lemma 3*12. Thus our extremal function would be given by (3.1) and there would 
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be nothing more to prove. It follows that we may restrict ourselves to the 

case v(0) -• 0 . By (3«53) this implies v(l) > 0 and hence v(t) cannot 

vanish in the interval 0 < t < 1 , by L<jmna 3*12. 

Since v(t) decreases from v(0) to (2/3)v(0) , we conclude from the 

first equation (3*52) that w(t) must be positive somewhere in the interval. 

From the second equation (3.52) we doduce that w(t) increases monotonically, 

and hence 

(3.57) w(l) > 0 . 

This implies by (3*53) the inequality 

(3.58) WO) > - <§ • ^)v(O) 

Therefore we can replace the identity (3*55) by the inequality 

/ -1^ dt . v(0)2(| • H£°l)< /  r(t,,(t)
2 dt 

0 

Using the estimate  (3«5l)  and putting 

(3.59) / - k * *(0)   =10      in 

we find 

(3-60) f J   R^t 
1   ,dv»2   ,. 
TrKryr)    dt J    uu 

X 

iv(0)2 < 1.002   f  v(t)2 dt 
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l 
I 

I: 
V 
• 

By Lemma 2.22, we have 

Jt >  1.107 

and this establishes 

LEMMA 3»13»    If    v(t)  | 0  ,  then 

(3.61) < 1.002     . 

0 

)2 dt 

On the other hand, we shall now prove in an elementary way 

LE^MA 3.lit.    For all functions    V(t)    which are piece-wise continuously dif- 

1'erenti. jle and not identically zero in the interval    0 < t < 1    and which 

satisfy the boundary condition 

(3.62) 7(1)  - | 7(0)     , 

we have 

(3.63) 

/ nrtfar'2 dt • i-wv(o)2 

J 

/ 

> 1.08 

7(tr dt 
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By Lemma 3.11 we have 

^y> («695)2     ,     0< t<l/2     , 

-^ > (.U72)2    ,    1/2- t<l    , 

and therefore it suffices to calculate 

1/2 1 

J     (.695)2v'(t)2 dt + J   (,li72)2v'(t)2 dt * 1.107V(0)' 

,-> c\ \     ,2 _ .  0 1/2 (3.6u) k - ruin —  — 
1 

fV(t)2 dt Jnty 
0 

2 
and to show that k > 1.08 . From the elements of the calculus of variations, 

we obtain the following characterization for the extremal function V(t) 

which yields the minimum in (3.6k).    We have for V(t) the differential 

equations 

(3.65) v" + —,V=0    ,    0<t<i    , 
C.695)2 " 2 

» v2 -\ 
(3.66) V    •—-—*V«0    ,    ±<t<l    , 

(.i>72)2 2 

the saltus conditions 

(3.67)       (.6.95)V(i - 0)  = (.V72)V(i * 0)     ,    V(J - 0)  = V(J • 0)   , 

/ 
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and the natural boundary condition 

(3.68) |(.I*72)V(1) - (.69S)V(0) - l.i07V(C) , 

together,, of course, with the ^ide condition (3-62), which is presupposed 

all the time. 

We deduce from the differential equations (3-65) and (3»66) that 

v(t) = Cl cos -^(t - |) * -^ Dx sin -^(t - |) , 0 < t < | , 

V(t) - C2 cos -jj^Ct - |) * ^D2 sin -^(t - i) , ±< t < 1 . 

The saltus conditions (3»67) lead to the equations 

Cl-C2 , Dl=D2 . 

On the other hand, the boundary conditions (3.62) and (3»65) yield the system 

of linear equations 

cicos xm* ^m Disin TW 
K ![cicos 1T39 - ToW Disin 1^9] ' 

I - f(^72)Clk sin -^ • § Dxk cos -^ = Cl[,695k sin ^ - 1.107 cos J^] 

*• ^ T. n      k    1.107 .,   k -> I • D^k cos T-sr + -^ sin j-y ] . 

I ' 
i 

r 

• 

\ / 
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This is a homogeneous system of linear equations which has non-trivial solu- 

tions only if its determinant 

r13 ,       .695 ,       2  .172 , , k,   1 1   N 
* [Ic? k - T9§ k - 9 T59T k] cos 2(39T " TOT* 

• 

i 

• 1.107[|(^ • ^)] sin f(^ * ^y) 
I 
n 

,   ,.„fl/    1 1   v i „.     k/    i 1   x 
i    - + 1

'
107

¥T^ " 372")] Sin 2("^9T " ^ 

- 
vanishes. Thus we obtain for k the transcendental relation 

(3.70)      l = 1.20703 cos(l.77875k) - .12369** cos(,339897k) 

+ !.U768 ^"Cl.77875k) , ^22  sin(.339897k) 
k k 

The equation  (3*70) has no roots in the interval    0 < k < l.Oli , whence 

k > 1»Q«    and the leircua is proved. 

The inequalities  (3.61) and (3«63)  are contradictory, and therefore we 

obtain 

LEMMA 3.1$.    There does not exist a solution of the boundary value problem 

(3.ii)-(3«8) whose initial values satisfy the estimates of Lemmas 2.21 and 

2.22,  except for the solution with the exact initial values 

(3.71) u(0)  - k    ,     v(0)   = 0     ,    x(0)  = 2&    ,    y(0)   = 0     . T 

/ 
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i 
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5. Conclusion. 

Lemma 3«15> completes our proof of the inequality  |ai | < k . Since our 

derivation of the principal Lemmas 2.22 and 3.15 turned out to involve a 

multitude of laborious calculations, it would seem appropriate to discuss 

from a broader point of view the main features of our method and to suggest 

alternative procedures which could have been used. 

As we mentioned in Chapter II, it is not actually necessary to introduce 

; 
terms involving    a_    in the preliminary estimation of    a_    and    a, , for the 

terms based on    a^    and    a^   yield sufficiently refined bounds for the unique- 

ness proof of this chapter.    To be precise,  if we carried through all the 

arguments of this chapter with the same basic formulas, but used everywhere 

numerical bounds derived from Lemma 2.17 rather than from Lemma 2.20, we 

would be led to a contradiction which would again establish Lemma 3»15>»    The 

chief difference in the proof would be that the new bounds appearing in 

Lemmas  3*13 and 3»lU would be much closer.    Also,  the value     P * l/7    would 

a deeper understanding of our method and of its applicability to further 

coefficient problems. 

In the opposite direction, we could have worked out preliminary bounds 

based on    a*    and on higher coefficients,  and with the improved estimates 

thus obtained our  study of the non-linear boundary value problem of Lemma 1.3 

E» would not have required such care.    On the other hand, we could emphasize less 

turn out to be barely large enough for the success of our estimates in 

Section 3«    The presence of more refined,   and therefore more convincing, 

bounds is not, however, so much the motive for exploiting tenus in    a_    as i," 
k. I 
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the method of Chapter II and refine instead the uniqueness proof in this 

chapter. Such a refinement could be obtained by subdividing the interval 

0 < t < 1 into more than two subintervals• This improvement amounts to a 

more ex«ct numerical integration uf the differential equations (1.10) and 

provides a routine tool suitable for more difficult problems. 

We have found no way to avoid altogether the estimation procedure of 

Chapter II. However, Lcewner's formulas could be side-stepped by expressing 

the equations for a? and a- near the point a0 • 2 , a, * 3 in terms of 

the periods of hyperelliptic integrals. This is done by separating variables 

in the differential equation (1.5)»  integrating, and writing down the con- 

ditions for the singularities of the integrals on either side of the aqv*tion 

to correspond under the conformal mapping by the extremal function. We have 

already mentioned this alternative when we studied another coefficient problem 

[E>]« We find our present approach more appealing because of its connection 

with non-linear differential equations. 

We should remark that the inequality (1.23) is also equivalent to the above 

equations for a0 and a^ if all the terms are retained and all the coef- 

ficients b   _ are expressed in terms of a? , a, and ai • This equiva- 

lence follows because boundedness of the coefficients t>^      -,    implies 

convergence of the solution of the differential equation (l»i>) in the entire 

interior of the unit circle. It is this insight which leads us to persevere 

in the tedious calculations of Chapter H. 

Finally, we are hopeful that the general method of our proof will find 

application to a wide variety of the more difficult extremal problems for 

w 

•\ / 
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schlicht functions which have thus far defied analysis. However, we must 

resist zhe  temptation to spend a lifetime working out a wealth of examples, 

each with its own special twistI 

> 
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